Back to projects 
DUT
REF

This apparatus measures phase noise down to wideband noise floor levels below 170 dBc/Hz. Historically, such measurements were either difficult or expensive to make. Based on the work [1] of Grove et al., the method described here is cheap, sensitive, accurate and requires no calibration. It is a differential measurement between a device under test (DUT) and a reference oscillator, which are connected to the SMA ports at the extreme left. Ideally, the reference oscillator should be an order of magnitude (or more) quieter, so DUT noise predominantes.
The largest board is a Xilinx SP605 FPGA evaluation board, attached to which (by the FMC connector) is a Linear Technology DC1525A quad ADC evaluation board, minus its topright corner. The two boards to which the DUT and reference are connected are custommade power splitters, feeding four ADC inputs through coaxial cables. The partpopulated yellow board, spare from my GPS project, was repurposed as a clean power supply for a Crystek CPRO3377.760 crystal oscillator, which can just be seen mounted vertically on the ADC clock input SMA.
ADC samples are received by the FPGA on eight LVDS pairs, each of which can run at up to 1Gbps.
In the FPGA, the four ADC channels are digitally downconverted to IQ complex baseband, low pass filtered, decimated, and phasedemodulated using a CORDIC arctangent block.
The resultant phase data is streamed to a Windows laptop via UDP over Ethernet.
Phase data is converted to power spectral density by Fast Fourier Transform (FFT) and displayed in realtime.
The quality of the measurement is refined by correlation / averaging the longer it runs.
The inputs are downconverted by mixing with a quadrature NCO.
NCO rate is set close to input frequency, but cannot remain exactly equal,
so the baseband signal is close to but rarely at zero frequency.
The CORDIC output is phase noise superimposed on a gentle linear ramp,
the gradient of which depends on the small unavoidable difference between input frequency and NCO rate.
The first neat trick is to make a differential measurement between DUT and reference, by subtracting their phases. The phase noise of the sampling clock is cancelledout. The quality of the measurement depends on the reference, not the ADC clock. Although the phases are subtracted, since the noises are uncorrelated, their powers add. So the result is the sum of DUT and reference noise. This is why the reference should be an order of magnitude quieter than the DUT. But the ADC clock requirement is less exacting.
Cancelling clock noise still leaves ADC quantisation noise and thermal noise, which raise the noise floor above 150 dBc/Hz, as already mentioned.
The second neat trick is to duplicate the measurement.
This is the reason for the power splitters.
Everything in the FPGA (and downstream in software) is replicated.
We simultaneously make two completely independent measurements.
Both contain the same (correlated) DUT+Reference noise; but different (uncorrelated) ADC noises.
The latter are then greatly attenuated using the cross spectrum experimental method described in [2] by E. Rubiola and F. Vernotte.
DUT and reference can actually be different frequencies!
I haven't tried this yet.
Reference phase data just needs scaling by the DUT/REF frequency ratio, to cancel clock jitter.
Although the sampling points of all four ADC channels are displaced by the same time amount Δt due to sampling clock jitter,
this affects the measured phases in proportion to frequency: ΦCLK = ωΔt.
It can be beneficial to use a higher reference frequency, because its phase noise contribution, ΦREF, will then be scaled down.
All we want from it is stability.
ADC noises remain uncorrelated, scaled or not.
ADC sampling rate is 77.76 Msps, decimated to 607.5 ksps in the FPGA. FFT length is typically 1000 points, and bins 10 to 99 are plotted from each decade. Length can be increased to get finer detail. Bins LEN/100 to LEN/10 are always plotted in the middle decades; but more are required (up to LEN * 100/607.5) in the first stage to reach 100 kHz. Fewer are needed in the last stage because the graph starts from 0.1 Hz. Low pass filters are 6th order Butterworth IIR with a normalised cutoff frequency of 20/1000. Scaling is applied to adjust for different FFT bin sizes and LPF growth at each decade.
Scaling is also required to correct for the equivalent noise bandwidth of a raised cosine window function, which is applied before each FFT.
The same signal can be fed to both the DUT and reference inputs with a third power splitter. I used this configuration to estimate system noise floor, before I knew about the imaginary part of the averaged crossproduct. When I started making differential measurements, I discovered another problem: lowfrequency spurs, due to crosstalk, at the DUT  Reference difference frequency. Fortunately, although they are quite noticeable in the imaginary part of the crossproduct, these spurs barely push through into the real part.
The Wenzel 50003220 is about 1 Hz offfrequency, judging by the lowfrequency crosstalk spurs around 1 and 2 Hz, which are evident in three plots, most strongly in the imaginary part. All plots have spurs at the 50 Hz power line frequency. Harmonics of 50 Hz and other "real" spurs are visible on the synthesizer plots. The 160 dBc spur around 21 kHz in (a) is 77759000*58  5000001*902. The two Dana 7020 "Digiphase" synthesizers are several years apart in age; but very similar in performance, except #2 has a probem at 410 Hz. Their closed loop responses match figure 268 in Garry Gillette's essay on page 290 of "Analog Circuit Design" edited by Jim Williams. Digiphase closein performance (90dBc/Hz @ 1Hz) beats the Marconi 2019A by 40dB. The 2019A has a lower wide band noise floor and much narrower PLL loop bandwidth. Wenzel may be as responsible as Dana for the measurements at 0.1 Hz. The Dana synthesizers were set to 5.000000, so fractional compensation was not operative.
LivePlot.cpp  GUI and worker thread using Windows API 
Capture.cpp  FPGA control via SPI over platform USB JTAG 
Packet.c  Ethernet UDP packet capture using winpcap 
LogFFT.cpp  Multidecade DSP, FFT and cross correlation 
The UI is minimal. Start and stop commands are added to the system menu. Data is crudely plotted in realtime, then dumped to a file, from which the belowlinked Python script produces proper graphs, like the above.
The most significant bits of the detected product are zero when the loop is locked, but less significant bits are noisy, and were routed out via a DAC to view the residual noise on an oscilloscope. It was the PLL method of phase noise measurement, implemented digitally. I googled "digital phase noise measurement" and found the Grove et al. paper.
Copyright © Andrew Holme, 2017. 