GPS user position solution

GPS range measurements are termed "pseudo-ranges" because they contain clock bias errors. The geometric range R from point (x, y, z) to a satellite at $\left(x_{s}, y_{s}, z_{s}\right)$ is

$$
\begin{equation*}
R(x, y, z)=\sqrt{\left(x-x_{s}\right)^{2}+\left(y-y_{s}\right)^{2}+\left(z-z_{s}\right)^{2}} \tag{1}
\end{equation*}
$$

But the pseudo-range as measured by a receiver at point (x, y, z) with clock bias t_{b} is

$$
\begin{equation*}
\rho\left(x, y, z, t_{b}\right)=R(x, y, z)+c t_{b} \tag{2}
\end{equation*}
$$

Ignoring second and higher order terms, this can be approximated and linearised by a multi-variable, generalised Taylor Series expansion

$$
\begin{equation*}
\rho(x+\Delta x, y+\Delta y, z+\Delta z, t+\Delta t) \approx \rho(x, y, z, t)+\frac{\partial \rho}{\partial x} \Delta x+\frac{\partial \rho}{\partial y} \Delta y+\frac{\partial \rho}{\partial z} \Delta z+\frac{\partial \rho}{\partial t} \Delta t \tag{3}
\end{equation*}
$$

Let (x, y, z) and time t_{b} be estimates of receiver position and clock bias; and let $\Delta x, \Delta y$, Δz and Δt_{b} be errors in the current estimates. Better estimates are

$$
x^{\prime}=x+\Delta x \quad y^{\prime}=y+\Delta y \quad z^{\prime}=z+\Delta z \quad t_{b}^{\prime}=t_{b}+\Delta t_{b}
$$

And equation 3 can be re-written
$\rho\left(x^{\prime}, y^{\prime}, z^{\prime}, t_{b}^{\prime}\right) \approx \rho\left(x, y, z, t_{b}\right)+\frac{\partial \rho}{\partial x} \Delta x+\frac{\partial \rho}{\partial y} \Delta y+\frac{\partial \rho}{\partial z} \Delta z+\frac{\partial \rho}{\partial t} \Delta t_{b}$
Abbreviating $R(x, y, z)$ to R, the partial derivates of ρ are

$$
\frac{\partial \rho}{\partial x}=\frac{x-x_{s}}{R} \quad \frac{\partial \rho}{\partial y}=\frac{y-y_{s}}{R} \quad \frac{\partial \rho}{\partial z}=\frac{z-z_{s}}{R} \quad \frac{\partial \rho}{\partial t}=c
$$

Substituting into equation 4 gives

$$
\begin{equation*}
\rho\left(x^{\prime}, y^{\prime}, z^{\prime}, t_{b}^{\prime}\right) \approx \rho\left(x, y, z, t_{b}\right)+\frac{x-x_{s}}{R} \Delta x+\frac{y-y_{s}}{R} \Delta y+\frac{z-z_{s}}{R} \Delta z+c \Delta t_{b} \tag{5}
\end{equation*}
$$

The (notionally more accurate) left-hand-side of equation 5 is now replaced with an actual pseudo-range measurement made by the GPS receiver

$$
\begin{equation*}
c t_{R X}-c t_{T X}=\rho\left(x, y, z, t_{b}\right)+\frac{x-x_{s}}{R} \Delta x+\frac{y-y_{s}}{R} \Delta y+\frac{z-z_{s}}{R} \Delta z+c \Delta t_{b} \tag{6}
\end{equation*}
$$

This is a linear equation in four unknowns: $\Delta x, \Delta y, \Delta z$, and Δt_{b}.

Let error term $\Delta \rho$ be the difference between measured and estimated pseudo-range
$\Delta \rho=c t_{R X}-c t_{T X}-\rho\left(x, y, z, t_{b}\right)$
And re-write equation 6 in terms of $\Delta \rho$
$\Delta \rho_{s}=\frac{x-x_{s}}{R_{s}} \Delta x+\frac{y-y_{s}}{R_{s}} \Delta y+\frac{z-z_{s}}{R_{s}} \Delta z+c \Delta t_{b}$
At least four range measurements are needed to solve for four unknowns. The simultaneous equations are conveniently written in matrix form
$\left|\begin{array}{l}\Delta \rho_{1} \\ \Delta \rho_{2} \\ \Delta \rho_{3} \\ \Delta \rho_{4}\end{array}\right|=\left|\begin{array}{cccc}\frac{x-x_{1}}{R_{1}} & \frac{y-y_{1}}{R_{1}} & \frac{z-z_{1}}{R_{1}} & c \\ \frac{x-x_{2}}{R_{2}} & \frac{y-y_{2}}{R_{2}} & \frac{z-z_{2}}{R_{2}} & c \\ \frac{x-x_{3}}{R_{3}} & \frac{y-y_{3}}{R_{3}} & \frac{z-z_{3}}{R_{3}} & c \\ \frac{x-x_{4}}{R_{4}} & \frac{y-y_{4}}{R_{4}} & \frac{z-z_{4}}{R_{4}} & c\end{array}\right| \cdot\left|\begin{array}{l}\Delta x \\ \Delta y \\ \Delta z \\ \Delta t_{b}\end{array}\right|$
Equation 8 can be expressed as
$\Delta \rho=H \cdot \Delta u$
In the four-satellite case, we simply multiply the pseudo-range errors by the matrix inverse of \boldsymbol{H} to find the four unknowns
$\Delta u=\boldsymbol{H}^{-1} \cdot \Delta \rho$
To solve more than four equations, we take the generalised or left inverse of \boldsymbol{H}
$\Delta u=\left(\boldsymbol{H}^{T} \cdot \boldsymbol{H}\right)^{-1} \cdot \boldsymbol{H}^{T} \cdot \Delta \boldsymbol{\rho}$
$\boldsymbol{H}^{T} \cdot \boldsymbol{H}$ is always 4×4, so we still only need to compute a 4×4 inverse.
The influence of each satellite can be adjusted using weighted least squares
$\Delta u=\left(\boldsymbol{H}^{T} \cdot \boldsymbol{W} \cdot \boldsymbol{H}\right)^{-1} \cdot \boldsymbol{H}^{T} \cdot \boldsymbol{W} \cdot \Delta \boldsymbol{\rho}$
The process is repeated until error magnitude $\mid \Delta x \Delta y \Delta z$ I is small. Typically, only five or six iterations are required. Zero starting values can be used for x, y, z and t_{b}.

Satellite positions should be transformed from ECEF to ECI co-ordinates inside the loop, since better estimates of signal flight times are available after each iteration.

